Journal of Organometallic Chemistry, 262 (1984) 315–322 Elsevier Sequoia S.A., Lausanne – Printed in The Netherlands

GEZIELTER AUFBAU UND RÖNTGENSTRUKTURANALYSE VON $(\mu_2$ -H)Os₃SW $(\eta^5$ -C₅H₅)(CO)₁₁: EIN CLUSTER MIT EINEM PYRAMIDALEN Os₃SW-GERÜST

GEORG SÜSS-FINK* *

Laboratorium für Anorganische Chemie der Universität Bayreuth, Universitätsstrasse 30, D-8580 Bayreuth (B.R.D.)

ULF THEWALT* und HEINZ-PETER KLEIN

Sektion für Röntgen- und Elektronenbeugung der Universität Ulm, Oberer Eselsberg, D-7900 Ulm (B.R.D.) (Eingegangen den 15. September 1983)

Summary

By reaction of $(\eta^5-C_5H_5)W(CO)_3SH$ with $Os_3(CO)_{11}(NCCH_3)$ the $(\eta^5-C_5H_5)W(CO)_3S$ unit is introduced into the trinuclear osmium cluster through the sulfur atom. The primary reaction product $(\mu_2-H)Os_3(CO)_{10}[\mu_2-SW(\eta^5-C_5H_5)(CO)_3]$ can be converted thermally into the pyramidal Os_3SW cluster $(\mu_2-H)Os_3SW(\eta^5-C_5H_5)(CO)_{11}$, whose structure was solved by a single crystal X-ray structure analysis. The molecule has a pyramidal Os_3SW skeleton with, in a first approximation a planar Os_3S basis. Only two of the three Os-Os distances are in accordance with chemical bonds.

Zusammenfassung

Durch Reaktion von $(\eta^5-C_5H_5)W(CO)_3SH$ mit Os₃(CO)₁₁(NCCH₃) lässt sich über das Schwefelatom eine $(\eta^5-C_5H_5)W(CO)_3S$ -Einheit in den dreikernigen Osmiumcluster einführen. Das dabei zunächst gebildete Produkt $(\mu_2-H)Os_3(CO)_{10}[\mu_2-SW(\eta^5-C_5H_5)(CO)_3]$ kann thermisch in den pyramidalen Os₃SW-Cluster $(\mu_2-H)Os_3SW(\eta^5-C_5H_5)(CO)_{11}$ übergeführt werden, dessen Struktur durch eine Einkristall-Röntgenstrukturanalyse bestimmt wurde. Das Molekül besitzt ein pyramidales Os₃SW-Gerüst mit einer in erster Näherung ebenen Os₃S-Grundfläche. Nur zwei der drei Os-Os-Abstände entsprechen chemischen Bindungen.

Gegenwärtige Adresse: Laboratoire de Chimie de Coordination Organique, Université de Rennes, Campus de Beaulieu, F-35042 Rennes Cédex.

Einleitung

Heterometallische Cluster werden gegenwärtig intensiv untersucht, da durch Kombination von Metallfragmenten mit unterschiedlichen chemischen Eigenschaften neuartige Strukturen und Reaktionsweisen zu erwarten sind [1,2]. Neben dem theoretischen und präparativen Interesse an Heterometallclustern findet ihre Anwendung als hochselektive homogene Katalysatoren zunehmend Beachtung [3-6]. Obwohl einige systematische Strategien zur gezielten Synthese vor allem von Vahrenkamp et al. entwickelt worden sind [7-11], bleiben Reaktionen zur Darstellung von Heterometallclustern häufig unberechenbar. Gemischte Osmium-Wolfram-Cluster sind entweder durch Umsetzung von $H_2Os_3(CO)_{10}$ und $HOs_3(CO)_{10}(NCCH_2)$ mit Wolfram-carbin-Komplexen [12,13] oder von $Os_3(CO)_{10}(NCCH_3)_2$ mit Wolfram-hydrid-Komplexen [14] erhalten worden.

Wir berichten hier über den gezielten Aufbau eines schwefelhaltigen Osmium-Wolfram-Clusters. Die Synthese geht von dem durch aminoxid-induzierte Substitution [15] leicht zugänglichen Osmiumcluster $Os_3(CO)_{11}(NCCH_3)$ [16,17] aus, in dem der Acetonitrilligand durch andere Donorsysteme verdrängt werden kann. Komplexe des Typs $(\mu_2$ -H)Os₃(CO)₁₀ $(\mu_2$ -SR) sind aus der thermischen Reaktion von Thiolen RSH mit Os₃(CO)₁₀(NCCH₃) [17], Os₃(CO)₁₂ [18] und $Os_3(CO)_{10}(C_6H_8)$ [19] bekannt. Es war daher zu erwarten, dass die Reaktion von $Os_3(CO)_{11}(NCCH_3)$ mit dem Sulfhydrylkomplex (η^5 -C₅H₅)W(CO)₃SH über eine Koordination des S-Atoms an das $Os_3(CO)_{11}$ -Gerüst und eine anschliessende Übertragung des H-Atoms vom Schwefel auf das Metallgerüst zu dem gemischten Cluster $(\mu_2$ -H)Os₃(CO)₁₀[μ_2 -SW(η^5 -C₅H₅)(CO)₃] (1) führen würde. Nach der Verknüpfung des Os₃-Gerüstes mit einer $(\eta^5-C_5H_5)$ W-Einheit über ein Schwefelatom zu 1 sollte sich die Ausbildung direkter Os-W-Bindungen thermisch durch Abspaltung von CO-Liganden erreichen lassen. In der Tat führt die Thermolyse von 1 zu dem Cluster (μ_2 -H)Os₃SW(η^5 -C₅H₅)(CO)₁₁ (2), dessen Struktur durch eine Röntgenstrukturanalyse aufgeklärt wurde.

Ergebnisse und Diskussion

Der zur Synthese von Monosubstitutionsprodukten des Dodecacarbonyl-triosmiums geeignete Komplex Os₃(CO)₁₁(NCCH₃) [16,17] reagiert in Dichlormethan glatt mit dem Sulfhydrylkomplex (η^{5} -C₅H₅)W(CO)₃SH unter Bildung von (μ_{2} -H)Os₃(CO)₁₀[μ_{2} -SW(η^{5} -C₅H₅)(CO)₃] (1). Das intermediäre Auftreten des Substitutionsproduktes Os₃(CO)₁₁[HSW(η^{5} -C₅H₅)(CO)₃] lässt sich unter den Reaktionsbedingungen nicht nachweisen. Die Verbindung 1 ist thermisch zersetzlich; in Lösung geht sie ab etwa 70°C unter Freisetzung von Kohlenmonoxid in den Cluster (μ_{2} -H)Os₃SW(η^{5} -C₅H₅)(CO)₁₁ (2) über.

SCHEMA 1. Synthese der gemischten Cluster 1 und 2.

TABELLE 1

	$(\mu_2 - H)Os_3(CO)_{10}[\mu_2 - SW(\eta^5 - C_5H_5)(CO)_3]$	(μ ₂ -H)Os ₃ SW(η ⁵ - C ₅ H ₅)(CO) ₁₁
IR (Cyclohexan)	ν(CO) 2103w, 2084vw, 2079vw, 2063vs, 2053m, 2030w, 2020vs, 2000m, 1988m, 1981w, 1974w, 1967s, 1944m (cm ⁻¹)	ν(CO) 2100m, 2077s, 2051s, 2005s, 1989m(sh), 1972m(sh), 1846w(br) (cm ⁻¹)
^t H-NMR (CDCl ₃)	δ(C ₅ H ₅) 5.63 ppm δ(Os ₂ H)-16.50 ppm	δ(C ₅ H ₅) 5.73 ppm δ(Os ₂ H)-19.73 ppm
MS	$[HOs_3SW(C_5H_5)(CO)_n]^+ (n = 13-3)$ Molekülion m/e 1222 (¹⁹² Os, ¹⁸⁴ W, ³² S)	$[HOs_3SW(C_5H_5)(CO)_n]^+$ (n = 11-0) Molekülion m/e 1166 (¹⁹² Os, ¹⁸⁴ W, ³² S)

SPEKTROSKOPISCHE	CHARAKTERISIERUNG DER	KOMPLEXE 1	UND 2
------------------	-----------------------	-------------------	-------

Die neuen Komplexe 1 und 2 lassen sich durch Kristallisation aus Dichlormethan/Pentan in Form mässig luftempfindlicher roter Kristalle isolieren. Die spektroskopischen Daten von 1 und 2 sind in der Tabelle 1 zusammengestellt. Im Massenspektrum beider Verbindungen treten neben dem Molekülion die durch CO-Abspaltung erzeugten Fragmente mit dem für die Kombination Os₃/W/S erwarteten Isotopenmuster auf. Das ¹H-NMR-Spektrum zeigt in beiden Fällen nur die Resonanz der Cyclopentadienylprotonen und der Hydridbrücke; aus dem Fehlen der ¹⁸³W-¹H-Satelliten beim Hydridsignal lässt sich schliessen, dass die Hydridbrücke nicht an Wolfram, sondern nur an Osmium gebunden ist. Im Carbonylbereich des Infrarotspektrums von 1 ist das charakteristische Bandenmuster eines (μ_2 -H)Os₃(CO)₁₀(μ_2 -L)-Systems von den Absorptionen einer W(CO)₃-Einheit überlagert. Das IR-Spektrum von 2 zeigt im Bereich terminaler CO-Gruppen nur fünf Absorptionen; die breite Bande bei 1846 cm⁻¹ dürfte "semiverbrückenden" Carbonylliganden zuzuordnen sein. Beide Clusterverbindungen stehen in Einklang mit der Edelgasregel.

Festkörperstruktur von 2

Eine Röntgenstrukturanalyse von 2 ergibt den in Fig. 1. dargestellten Molekülbau. Die wesentlichen Bindungsabstände und -winkel sind in Tabelle 2 zusammengestellt. Das Molekül besitzt ein pyramidales Os_3SW -Gerüst mit einer in erster Näherung ebenen Os_3S -Grundfläche. Die Abweichung des S-Atoms (zum W-Atom hin) von der Ebene durch die drei Os-Atome beträgt 0.25 Å. Diese Struktur lässt sich auch so beschreiben: Das μ_3 -gebundene Schwefelatom überbrückt eine Os_2W -Dreiecksfläche eines verzerrten Os_3W -Tetraeders, wobei die Verzerrung derart ist, dass die eine Seite (Os(2)-Os(3)) des überbrückten Dreiecks keine Bindung darstellt. Dass auch andere Geometrien für das Os_3W -Gerüst realisiert sein können (L = überbrückender Ligand), belegen die Verbindungen A und B. (Um bei der Strukturdiskussion nicht mehrfach Formeln explizit im Text aufführen zu müssen, sind die Formeln der relevanten Verbindungen unten mit Literaturzitaten zusammengestellt.) Bei A liegt ein tetraedrisches Os_3W -Gerüst vor, wobei eine Os_2W -Fläche (alle Kanten stellen

Fig. 1. Ein einzelnes $(\mu_2$ -H)Os₃SW $(\eta^5$ -C₅H₅)(CO)₁₁-Molekül mit Atomnumerierung.

Bindungen dar) mit einem μ_2 -Carbinliganden überbrückt wird, und bei **B** liegt ein nahezu ebenes Os₃W-Viereck vor, dessen eine Diagonale (Os-W) eine Bindung darstellt und dessen eines Os₂W-Dreieck durch den Acylliganden überbrückt wird.

Die drei Osmiumatome der vorliegenden Verbindung besitzen eine verzerrt oktaedrische Umgebung. Das Wolframatom weist die Koordinationszahl 7 mit einer stark verzerrt pentagonalbipyramidalen Anordnung der Liganden auf.

W-Os-Bindungsabstände. Die beiden durch S überbrückten Polyederkanten W-Os(2) und W-Os(3) sind mit 2.917(2) bzw. 2.885(2) Å deutlich kürzer als die nicht-überbrückte W-Os(1)-Kante (3.004(2) Å). Zum Vergleich: d(W-Os) in A 2.867(1) bis 2.915(1) Å, in C (unter Ausschluss der H-überbrückten Bindungen) 2.880(3) Å und in D 2.909(2) bis 2.934(2) Å.

Os-S-Abstände. Die beiden Os-S-Abstände (2.362(8) und 2.418(8), Mittelwert 2.39 Å) stimmen mit entsprechenden Abständen in anderen Verbindungen mit der Os₃S-Baugruppe in engen Grenzen überein. Die Mittelwerte für E und F beispielsweise sind 2.39 bzw. 2.40 Å.

Os-Os-Abstände. Die beiden Os-Os-Bindungsabstände sind mit 2.807(2) und 2.945(2) Å signifikant voneinander verschieden. Der mittlere Os-Os-Abstand in G (2.887(3) Å) liegt gerade zwischen ihnen.

Die beiden W-gebundenen Carbonylgruppen fungieren dem Os(1)- bzw. dem Os(3)-Atom gegenüber als "semiverbrückende" Liganden. Dies zeigt sich in den engen Kontakten C(10) \cdots Os(3) (2.50(4) Å) und C(11) \cdots Os(1) (2.59(3) Å) sowie darin, dass die W-C-O-Bindungswinkel mit 159(3) bzw. 157(3)° beträchtlich von 180° abweichen. Ein gleichartiges Verhalten – für allerdings nur eine der W-gebundenen Carbonylgruppen – wird in A beobachtet (C \cdots Os-Abstand 2.54(2) Å, W-C-O-Winkel 159(2)°).

- A $Os_3W(\mu_3-CC_6H_4Me-4)(CO)_{11}(\eta^5-C_5H_5)$ [13],
- **B** Os₃W(C(O)CH₂C₆H₄Me-4)(CO)₁₁(η^{5} -C₅H₅) [12],

TABELLE 2

WICHTIGE BINDUNGSABSTÄNDE UND -WINKEL IN (µ2-H)Os3SW(n5-C5H5)(CO)11 a

Atome	Abstand (Å)	Atome	Winkel (°)
Os(1)-Os(2)	2.945(2)	Os(2)-Os(1)-Os(3)	84.2(1)
Os(1)-Os(3)	2.807(2)	Os(2) - Os(1) - W	58.7(1)
Os(1)-W	3.004(2)	Os(3) - Os(1) - W	59.4(1)
$Os(2) \cdots Os(3)$	3.859(2)	Os(1)-Os(2)-W	61.6(1)
Os(2)–W	2.917(2)	Os(1)-Os(2)-S	82.6(2)
Os(3)-W	2.885(2)	W-Os(2)-S	52.7(2)
		Os(1)-Os(3)-W	63.7(1)
S-Os(2)	2.362(8)	Os(1)-Os(3)-S	84.7(2)
S-Os(3)	2.418(8)	W-Os(3)-S	52.8(2)
S-W	2.395(8)		
		Os(1)-W-Os(2)	59.6(1)
Os(1)-C(1)	2.01(4)	Os(1)-W-Os(3)	56.9(1)
Os(1)C(2)	1.86(3)	Os(2)-W-Os(3)	83.4(1)
Os(1) - C(3)	1.91(3)	Os(1)-W-S	80.8(2)
Os(2)-C(4)	2.03(5)	Os(2)-W-S	51.7(2)
Os(2)-C(5)	1.93(5)	Os(3)-W-S	53.5(2)
Os(2)-C(6)	1.93(4)	C(10) - W - C(11)	94.9(13)
Os(3)-C(7)	2.05(4)	Z-W-C(10)	108.3(15)
Os(3) - C(8)	1.87(4)	Z-W-C(11)	110.2(15)
Os(3)-C(9)	1.94(3)		
		Os(2)-S-Os(3)	107.7(3)
$Os(3) \cdots C(10)$	2.50(4)	Os(2)-S-W	75.6(2)
$Os(1) \cdots C(11)$	2.59(3)	Os(3)-S-W	73.7(2)
W-C(10)	1.97(4)	Os(2) - Os(1) - C(1)	90.6(10)
WC(11)	2.00(4)	Os(3) - Os(1) - C(2)	94.8(11)
		Os(2) - Os(1) - C(3)	112.0(8)
W-C(12)	2.34(5)	Os(1) - Os(2) - C(4)	90.4(13)
W-C(13)	2.34(3)	Os(1) - Os(2) - C(6)	116.4(11)
W-C(14)	2.41(4)	Os(1) - Os(3) - C(9)	86.3(10)
WC(15)	2.38(4)		
W-C(16)	2.30(4)	W-C(10)-O(10)	159(3)
W-Z	2.01(4)	W-C(11)-O(11)	157(3)
C(12)-C(13)	1.41(6)		
C(13)-C(14)	1.36(5)		
C(14)-C(15)	1.54(6)		
C(15)-C(16)	1.43(5)		
C(16)-C(12)	1.44(6)		

^a Z ist der Schwerpunkt des η^5 -C₅H₅-Ringes.

- C $(\mu-H)_3Os_3W(CO)_{11}(\eta^5-C_5H_5)$ [21],
- **D** $(\mu$ -H)Os₃W(CO)₁₂ $(\eta^{5}$ -C₅H₅) [22],
- **E** $[(C_{18}H_{15}P)_2N][(\mu-H)Os_3(\mu_3-S)(CO)_9]$ [23],
- **F** Os₃(μ_3 -S)(μ_3 -NSiMe₃)(CO)₉ [24],
- G Os₃(CO)₁₂ [25],
- H $(\mu-H)Os_3(CO)_9(\mu-S_2CH)(PMe_2Ph)$ [26].

Zur Position des Hydridliganden. Entsprechend den oben erwähnten ¹H-NMRspektroskopischen Befunden ist die Hydridbrücke einer der Os-Os-Polyederkanten zuzuordnen. Aus den folgenden Gründen nehmen wir an, dass die Os(1)-Os(2)-Kante überbrückt wird. 1. Dies ist die längere der beiden Os-Os-Kanten (2.945(2) gegenüber 2.807(2) Å). In vergleichbaren Hydrido-Os-Komplexen, wie **D** und **H**, liegt der Hydridligand über der jeweils längsten Seite.

2. Die bezüglich der angenommenen H-Position *cis*-ständigen C(3)- und C(6)-Carbonylliganden an Os(1) bzw. Os(2) sind deutlich "auseinandergedrückt" (Winkel Os(2)-Os(1)-C(3) 112.0 und Winkel Os(1)-Os(2)-C(6) 116.4°), während die zu der anderen denkbaren H-Position über der Os(1)-Os(3)-Kante gehörenden Carbonylgruppen keine solchen Verschiebungen zeigen (Winkel C(3)-Os(1)-Os(3) 82.8 und Winkel C(8)-Os(3)-Os(1) 95.2°)

3. Da Os(2) durch den Hydridliganden Elektronendichte geliefert bekommt, benötigt es keinen weiteren "Elektronenlieferanten". Dementsprechend hat sich die "semiverbrückende" C(10)-O(10)-Carbonylgruppe dem elektronenärmeren Os(3)-Atom zugewendet.

Die Mittelwerte der Os-C-Carbonylabstände und der entsprechenden C-O-Abstände betragen 1.95(2) bzw. 1.10(2) Å. Die W-C-Ring-, W-C-Carbonyl-, C-O-Carbonyl- und C-C-Ringabstände entsprechen den Erwartungen. Bemerkenswert enge Kontakte in der Kristallstruktur von 2 treten nicht auf.

Experimentelles

Die Ausgangsverbindungen $Os_3(CO)_{11}(NCCH_3)$ [17] und $(\eta^5-C_5H_5)W(CO)_3SH$ [20] wurden nach Literaturvorschriften erhalten. Die Komplexe 1 und 2 wurden unter N₂-Schutz in absoluten, N₂-gesättigten Lösungsmitteln dargestellt. Zur präparativen Dünnschichtchromatographie wurden Platten verwendet, die mit Merck Kieselgel 60 GF 254 beschichtet waren.

Für die spektroskopischen Messungen standen folgende Geräte zur Verfügung: IR-Spektren: Perkin-Elmer 297; ¹H-NMR-Spektren: JEOL FX 90Q; Massenspektren: Varian MAT CH7 (Elektronenstossionenquelle IXB).

Die Elementaranalysen wurden vom Mikroanalytischen Laboratorium Pascher, Bonn, ausgeführt; die analytische Bestimmung von Wasserstoff war wegen der Anwesenheit von Osmium nicht möglich.

Darstellung von $(\mu_2 - H)Os_3(CO)_{10}[\mu_2 - SW(\eta^5 - C_5H_5)(CO)_3]$ (1)

Eine Lösung von 400 mg (0.44 mmol) $Os_3(CO)_{11}(NCCH_3)$ und 180 mg (0.49 mmol) (η^5 -C₅H₅)W(CO)₃SH in 50 ml CH₂Cl₂ wurde 3 h bei 30°C gerührt. Nach Abziehen des Lösungsmittels wurde der Rückstand mehrmals mit wenig Pentan gewaschen und dann in heissem CH₂Cl₂ gelöst. Die Lösung wurde filtriert und bis zur beginnenden Kristallisation mit Pentan versetzt; Komplex 1 kristallisierte bei -30° C fast vollständig aus. Hellrote, mässig luftempfindliche Kristalle. Ausbeute 295 mg (55%).

Gef.: C, 17.67; S, 2.77. C₁₈H₆O₁₃Os₃SW (1216.75) ber.: C, 17.77; S, 2.63%.

Darstellung von $(\mu_2 - H)Os_3 SW(\eta^5 - C_5 H_5)(CO)_{11}$ (2)

Eine Lösung von 250 mg (0.21 mmol) 1 in 30 ml THF und 40 ml Octan wurde 15 h auf 110°C (Badtemperatur) erhitzt. Danach wurde die Mischung zur Trockne gebracht; die dünnschichtchromatographische Reinigung des Rückstandes (Dichlormethan/Cyclohexan 40/60) lieferte das Produkt als unterste orangerote Zone, die sich mit Dichloromethan eluieren liess. Die Verbindung 2 kristallisierte bei -30° C

TABELLE 3

Atom	x	у	Z	U
Os(1)	0.5833(1)	0.1325(1)	0.6116(1)	0.016(1)
Os(2)	0.5402(1)	0.4194(1)	0.6261(1)	0.021(1)
Os(3)	0.7088(1)	0.1838(1)	0.6894(1)	0.018(1)
W	0.7032(1)	0.3575(1)	0.6025(1)	0.016(1)
S	0.6619(5)	0.4168(8)	0.6819(3)	0.023(7)
O(1)	0.4470(18)	0.0922(30)	0.5250(12)	0.049(7)
O(2)	0.6735(19)	-0.0915(30)	0.5647(12)	0.053(7)
O(3)	0.5130(15)	0.0619(25)	0.6812(10)	0.036(6)
O(4)	0.4106(24)	0.3929(39)	0.5369(16)	0.077(10)
O(5)	0.5585(23)	0.7240(41)	0.6057(15)	0.081(11)
O(6)	0.4246(18)	0.4789(32)	0.7032(12)	0.056(8)
O(7)	0.8724(19)	0.2643(32)	0.7495(13)	0.057(8)
O(8)	0.6110(24)	0.1417(38)	0.7758(16)	0.080(10)
O(9)	0.7542(19)	-0.1084(32)	0.6779(12)	0.057(8)
O(10)	0.8075(17)	0.0956(28)	0.5973(11)	0.043(7)
O(11)	0.5890(17)	0.3043(28)	0.5054(11)	0.045(7)
C(1)	0.4915(22)	0.1139(36)	0.5560(14)	0.032(8)
C(2)	0.6383(20)	-0.0059(34)	0.5831(13)	0.028(7)
C(3)	0.5450(17)	0.0165(28)	0.6604(11)	0.015(6)
C(4)	0.4546(29)	0.4098(47)	0.5651(19)	0.053(11)
C(5)	0.5445(29)	0.6082(51)	0.6070(19)	0.060(12)
C(6)	0.4649(23)	0.4542(39)	0.6739(15)	0.038(8)
C(7)	0.8157(22)	0.2372(37)	0.7317(14)	0.034(8)
C(8)	0.6458(23)	0.1503(38)	0.7410(15)	0.039(9)
C(9)	0.7407(19)	-0.0040(34)	0.6816(13)	0.026(7)
C(10)	0.7607(21)	0.1816(35)	0.6061(14)	0.029(8)
C(11)	0.6207(20)	0.3033(34)	0.5451(13)	0.029(7)
C(12)	0.8241(30)	0.4100(48)	0.5702(19)	0.057(11)
C(13)	0.8248(20)	0.4809(34)	0.6159(13)	0.028(7)
C(14)	0.7660(24)	0.5779(40)	0.6158(15)	0.041(9)
C(15)	0.7185(24)	0.5702(40)	0.5629(15)	0.040(9)
C(16)	0.7564(23)	0.4642(40)	0.5378(15)	0.040(9)

ATOMPARAMETER VON (μ_2 -H)Os₃SW(η^5 -C₅H₅)(CO)₁₁

aus einer Lösung in Dichlormethan/Pentan (1/1) in Form roter Kristalle aus. Ausbeute 60 mg (25%).

Gef.: C, 16.44; S, 2.81. C₁₆H₆O₁₁Os₃SW (1160.73) ber.: C, 16.44; S, 2.76%.

Kristalldaten und Röntgenstrukturanalyse von 2

Raumgruppe C2/c; Gitterkonstanten a 16.591(8), b 9.824(6), c 26.904(9) Å, β 97.16(3)°; D(gemessen) 3.48, D(berechnet für Z = 8) 3.544 g cm⁻³; alle Röntgenmessungen mit Mo- K_{g} -Strahlung (Philips-PW1100-Diffraktometer, Graphitmono-chromator, λ 0.71069 Å, bei 22°C).

Intensitätsdaten. $\Theta/2\Theta$ -Betrieb, $2\Theta_{\max}$ 50°; insgesamt 3826 unabhängige Reflexe erfasst; Lp- und empirische Absorptionskorrektur angebracht (letztere basierend auf Ψ -scans für mehrere Reflexe mit χ nahe bei 90°). Im folgenden die 3103 Reflexe mit $F_o \ge 8\sigma(F_o)$ verwendet. Strukturbestimmung mit MULTAN 80 [27]. Verfeinerung mit anisotropen Temperaturfaktoren für die W-, Os- und S-Atome und mit isotropen Temperaturfaktoren für die übrigen Nichtwasserstoffatome. H-Atome in allen Stadien ignoriert. Gewichtsfunktion $w^{-1} = \sigma^2(F_o) + 0.0005F_o^2$. Restelektronendichtemaxima in abschliessender ΔF -Synthese bis zu 4.0 e Å⁻³; alle ca. 1.1 Å von den Metallatomen entfernt. R = 0.081, $R_w = 0.083$. Benutzte Formfaktorwerte für Neutralatome, Korrekturen für anomale Dispersion und Rechenprogramme wie in [24]. Die Atomparameter sind in Tabelle 3 aufgeführt. Für die W-, Os- und S-Atome sind die aus den anisotropen Temperaturparametern erhaltenen U_{ee} -Werte aufgeführt.

Literatur

- 1 W.L. Gladfelter und G.L. Geoffroy, Adv. Organometal. Chem., 18 (1980) 207.
- 2 D.A. Roberts und G.L. Geoffroy, in G. Wilkinson, F.G.A. Stone und E.W. Abel (Eds.), Compounds with Heteronuclear Bonds between Transition Metals (Chapter 40), Vol. 6, Comprehensive Organometallic Chemistry, Pergamon Press, Oxford, 1982.
- 3 M. Hidai, M. Orisaku, M. Ue, Y. Koyasu, T. Kodama und Y. Uchida, Organometallics, 2 (1982) 292.
- 4 D. Labroue und R. Poilblanc, J. Mol. Catal., 2 (1977) 329.
- 5 F.A. Cotton, G.F.C. Jones, M.J. Mays, J.A.S. Howell, Inorg. Chim. Acta, 20 (1976) L41.
- 6 P.C. Ford, R.G. Rinker, C. Ungermann, R.M. Laine, V. Landis und S.A. Moya, J. Amer. Chem. Soc., 100 (1978) 4545.
- 7 H. Beurich und H. Vahrenkamp, Angew. Chem., 90 (1978) 915; Angew. Chem., Int. Ed. Engl., 17 (1978) 863.
- 8 F. Richter und H. Vahrenkamp, Angew. Chem., 90 (1978) 916; Angew. Chem., Int. Ed. Engl., 17 (1978) 864.
- 9 H. Beurich und H. Vahrenkamp, Angew. Chem., 93 (1981) 128; Angew. Chem., Int. Ed. Engl., 20 (1981) 98.
- 10 H. Vahrenkamp und E.J. Wucherer, Angew. Chem., 93 (1981) 715; Angew. Chem., Int. Ed. Engl., 20 (1981) 680.
- 11 E. Roland, K. Fischer und H. Vahrenkamp, Angew. Chem., 95 (1983) 324; Angew. Chem., Int. Ed. Engl., 22 (1983) 326; Angew. Chem. Suppl., (1983) 419.
- 12 J.R. Shapley, J.T. Park, M.R. Churchill, C. Bueno und H.J. Wasserman, J. Amer. Chem. Soc., 103 (1981) 7385.
- 13 L. Busetto, M. Green, B. Hessuer, J.A.K. Howard, J.C. Jeffery und F.G.A. Stone, J. Chem. Soc., Dalton Trans., (1983) 519.
- 14 M.R. Churchill, J.F. Hollander, J.R. Shapley und D.S. Forse, J. Chem. Soc. Chem. Commun., (1978) 534.
- 15 U. Koelle, J. Organomet. Chem., 133 (1977) 53.
- 16 B.F.G. Johnson, J. Lewis und D. Pippard, J. Organomet. Chem., 160 (1978) 263.
- 17 B.F.G. Johnson, J. Lewis und D. Pippard, J. Chem. Soc., Dalton Trans., (1981) 407.
- 18 G.R. Crooks, B.F.G. Johnson, J. Lewis und J.G. Williams, J. Chem. Soc. (A), (1969) 797.
- 19 E.G. Bryan, B.F.G. Johnson und J. Lewis, J. Chem. Soc., Dalton Trans., (1977) 1328.
- 20 W. Danzer, W.P. Fehlhammer, A.T. Lin, G. Thiel und W. Beck, Chem. Ber., 115 (1982) 1682.
- 21 M.R. Churchill und F.J. Hollander, Inorg. Chem., 18 (1979) 161.
- 22 M.R. Churchill und F.J. Hollander, Inorg. Chem., 18 (1979) 843.
- 23 B.F.G. Johnson, J. Lewis, D. Pippard und P.R. Raithby, Acta Cryst., B34 (1978) 3767.
- 24 G. Süss-Fink, U. Thewalt und H.-P. Klein, J. Organomet. Chem. 224 (1982) 59.
- 25 M.R. Churchill und B.G. de Boer, Inorg. Chem., 16 (1977) 878.
- 26 R.D. Adams und J.P. Selegue, J. Organomet. Chem., 195 (1980) 223.
- 27 D.P. Declercq, G. Germain, P. Main und M.M. Woolfson, Acta Cryst., A29 (1973) 231.